Quickstart ========== Here is a simple example to get you started with Perpetual. Classification -------------- .. code-block:: python from perpetual import PerpetualBooster from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification(n_samples=1000, n_features=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = PerpetualBooster(objective="LogLoss") model.fit(X_train, y_train) predictions = model.predict(X_test) Regression ---------- .. code-block:: python from perpetual import PerpetualBooster from sklearn.datasets import make_regression X, y = make_regression(n_samples=1000, n_features=20) model = PerpetualBooster(objective="SquaredLoss") model.fit(X, y) predictions = model.predict(X) Ranking ------- .. code-block:: python import numpy as np from perpetual import PerpetualBooster # Generate synthetic ranking data # 100 queries, each with 10 documents n_queries = 100 n_docs_per_query = 10 total_docs = n_queries * n_docs_per_query X = np.random.rand(total_docs, 5) # 5 features y = np.random.rand(total_docs) # Relevance scores # helper to create groups # The 'group' parameter tells the booster which rows belong to the same query group = np.full(n_queries, n_docs_per_query) model = PerpetualBooster(objective="ListNetLoss") model.fit(X, y, group=group) predictions = model.predict(X) More Examples ------------- You can find more examples in the `package-python/examples `_ directory on GitHub.